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Abstract
We have recently improved our free-energy forcefield for all-atom de novo
protein folding to address the folding of proteins with beta-sheet secondary
structure. The folding of beta strands is nevertheless more difficult than that
of helical proteins, because of non-local interactions between regions of the
protein chain that are not consecutive in the amino acid sequence. Here we use
a greedy version of the basin-hopping technique with our free-energy forcefield
PFF02 to reproducibly and predictively fold the structure of a β-hairpin loop.
The lowest energy structure found in the simulation has a backbone root mean
square deviation of only 2.62 Å to the native conformation. The side-chain
alignment is also correctly predicted, as are four of the five backbone hydrogen
bonds found in the native structure.

(Some figures in this article are in colour only in the electronic version)

1. Background

De novo protein folding and structure prediction from the sequence information alone still
remain challenging tasks even for small proteins [1–5]. Atomistic simulations of the folding
process remain confined to small peptides, due to their large computational cost [6, 7]. With the
development of reliable forcefields and robust simulation techniques, protein folding studies
may assist in the understanding of the folding process and protein biological function at an
atomistic level. Based on the thermodynamic paradigm [8] of protein folding, free-energy-
based methods describe the native structure of the protein as the global optimum of a suitable
free-energy forcefield. This approach to protein structure determination is potentially much
faster and more predictive than the costly simulation of the folding pathway, but will obviously
sacrifice dynamical information.

We have earlier reported the rational development of a transferable free-energy forcefield
PFF01 [9] that correctly predicts the native conformation of various helical proteins (1L2Y [4],
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1F4I [10], 1VII [11], 1GYZ [12, 13]) at the global minimum. We have recently modified PFF01
to a more generalized free-energy forcefield PFF02 [14], which predicts tertiary structures of
proteins with more diverse secondary structural elements, especially beta-sheet structures.

In our experience the folding of alpha-helical conformations requires much less
computational resources than that of beta-sheet secondary structure elements. One reason that
beta-strand structure prediction is more difficult to fold stems from the high prevalence of non-
local interactions between regions of the protein chain that are not-consecutive in the amino acid
sequence. These long-range interactions make it difficult to nucleate an appropriate starting
point in the protein conformation, from which the whole conformation can grow. While helices
can nucleate, at least in principle, anywhere in the helix sequence, beta-sheets require the
nucleation of a partially formed structure with the correct hydrogen bonding pattern. Because
many more hydrogen bond pairings are possible, the nucleation of such a correct nucleus is
much less likely. The optimal choice of the backbone hydrogen bond topology provides an
important enthalpic contribution for the stabilization of the native conformation. The search
for the global optimum of the free-energy surface of proteins containing beta-sheet secondary
structure is therefore much more demanding.

Here we report the predictive and reproducible folding of a designed β-hairpin loop (PDB
Code: 2EVQ) in the improved free-energy forcefield PFF02. We used a greedy version of the
basin-hopping technique [15], which biases the search process toward lower-energy structures.
We find that eight out of ten simulations converge to less than 3 Å backbone root mean square
deviations (bRMSDs) from the native conformation; the lowest-energy conformation located
during the search process had a bRMSD of 2.62 Å compared to the native conformation. Eight
out of ten simulations find hairpin-like conformations (with bRMSDs between 2.4 and 2.8 Å).

2. Methods

2.1. The free-energy forcefield PFF02

We have recently developed all-atom (with the exception of apolar CHn groups) free-energy
protein forcefields (PFF01/02) that model the low-energy conformations of proteins with
minimal computational demand [9, 14]. The forcefield, which parameterizes the internal
free energy of the protein excluding backbone entropy, contains the following non-bonded
interactions:
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[(
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Here ri j denotes the distance between atoms i and j and g(i) the type of the amino acid i .
The Lennard-Jones parameters (Vi j , Ri j) for potential depths and equilibrium distance depend
on the type of the atom pair and were adjusted to satisfy constraints derived from a set of 138
proteins of the PDB database [16–18]. The non-trivial electrostatic interactions in proteins are
represented via group-specific and position-dependent dielectric constants (εg(i)g( j)), depending
on the amino acids to which the atoms i and j belong. Interactions with the solvent were first
fitted in a minimal solvent-accessible surface model [19] parameterized by free energies per
unit area σi to reproduce the enthalpies of solvation of the Gly–X–Gly family of peptides [20].
Ai corresponds to the area of atom i that is in contact with a fictitious solvent.

Hydrogen bonds are described via dipole–dipole interactions included in the electrostatic
terms and an additional short-range term for backbone–backbone hydrogen bonding (CO to
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NH) which depends on the OH distance, the angle between N, H and O along the bond and the
angle between the CO and NH axis [9]. In comparison to PFF01, the forcefield PFF02 contains
an additional electrostatic term Vbb that differentiates between the backbone dipole alignments
found in different secondary structure elements (included in the electrostatic potential between
atoms i and j via the dielectric constants εg(i)g( j)) [21] and a torsional potential for backbone
dihedral angles Vtor, which gives a small contribution (about 0.3 kcal mol−1) to stabilize
conformations with dihedral angles in the beta-sheet region of the Ramachandran plot [14, 22].
The additional electrostatic term acts as an effective dielectric constant for short-range
interactions between the dipole moments of neighbouring amino acids, maximally two residues
apart in the sequence [21]. Because the alignment of these dipoles differs in helices and beta-
sheets, it effectively discriminates between these two secondary structure elements.

2.2. Greedy basin hopping

The basin-hopping technique [23] and the related Monte Carlo-with-minimization method [24]
employ a relatively straightforward approach to eliminate high-energy transition states of the
potential-energy surface (PES): the original potential-energy surface is simplified by replacing
the energy of each conformation with the energy of a nearby local minimum. This replacement
eliminates high-energy barriers in the stochastic search that are responsible for the freezing
problem in simulated annealing. The basin-hopping technique and derivatives has been used
previously to study the potential-energy surface of model proteins and polyalanines using all-
atom models [25–27].

We replace the gradient-based minimization step with a simulated annealing (SA)
run [28, 15], because local minimization generates only very small steps on the free-energy
surface. As in basin hopping, the simulation is always started from the last local minimum
found. Within each SA simulation, new configurations are accepted according to the Metropolis
criterion, while the temperature is decreased geometrically from its starting value to the final
value. The starting temperature and cycle length determine how far the annealing step can
deviate from its starting conformation. The final temperature must be small compared to typical
energy differences between competing metastable conformations, to ensure convergence to a
local minimum. The annealing protocol is thus parameterized by the starting temperature TS,
the final temperature TF, and the number of steps.

At the end of one annealing cycle the new conformation is accepted if its energy difference
from the current configuration is no higher than a given threshold energy εT, an approach
recently proven optimal for certain optimization problems. The greedy version of basin hopping
has a varying threshold energy depending upon the best energy found so far in the simulation.
Here we calculated the threshold criteria as (εS − εB)/4, where εS is the starting energy and εB

is the best energy found so far in the simulation. This choice implies that the conformation with
the best energy is never replaced with a conformation that is higher in energy, and effectively
introduces a ‘memory effect’ in the simulation. For simulations that are higher in energy,
the increased threshold value implies a higher acceptance probability of conformations with
high energy. As a result these simulations explore the conformational space faster, in the
secure knowledge that they are far from optimal. Overall this leads to an improvement of
the convergence of the low-energy simulations, but a loss of convergence for the high-energy
conformations.

The starting temperatures were randomly chosen from an exponential distribution which
helps to speed up the search process [15]. The number of steps was increased in every cycle by
a factor of

√
n, which also helps in accurate location of the minima on the free-energy surface.

The final temperatures for each simulation annealing cycle of basin hopping was set at 3 K.
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Figure 1. Energy versus bRMSD of all conformations visited during the simulation. The (red)
squares indicate the lowest-energy conformation found in each of the ten independent simulations.

3. Results

We started the simulations of a designed β-hairpin loop (pdb-id: 2EVQ, sequence:
KTWNPATGKWTE) [30] peptide starting from a completely extended conformation. The
starting conformation for the simulation had a bRMSD of 10.5 Å from the native conformation
and large positive energy in PFF02. Following the standard definitions for hydrogen bonding
in MOLMOL [31] (with maximum distance = 2.4 Å and maximum angle = 35◦), 2EVQ folds
into a hairpin conformation with backbone hydrogen bonds between residues 2 and 11 and 4
and 9, respectively.

We performed ten independent simulations for 100 cycles, each of which comprised about
7 million energy evaluations, using the greedy basin-hopping algorithm described in section 2.
Figure 1 shows the distribution of conformations visited during the search process by energy
and bRMSD. The plot of energy as a function of the steps is shown in figure 2. The bottom
panel of the figure also shows the first passage times for reaching the native ensemble for the
nine converging simulations. The average first passage time was 2.2×106 function evaluations,
which provides and unbiased comparison with other methods [32].

The minimal energy and bRMSD from the original NMR structure are shown in table 1.
Eight out of the ten simulations converged to less than 3 Å bRMSD from the native
conformation. The best structure deviated by only 2.62 Å bRMSD. An analysis of the
secondary structure content revealed a close similarity of all low-energy structures. All
converged structures predict the two strands of the hairpin correctly.

The low-energy part of the free-energy landscape is illustrated in figure 3, which
demonstrates the existence of a nearly perfect folding funnel, in agreement with the current
paradigm of protein structure formation [33, 34]. In the absence of backbone entropy the low-
energy part of the folding funnel appears to be somewhat rugged, and has only a small overall
slope towards the native conformation.
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Figure 2. Average energy (top)/bRMSD (bottom) and the lowest energy (top)/bRMSD (bottom)
as the function of the number of energy evaluations during the simulations described in the text.
The data points are shown as orange squares; the blue circles indicate the first passage times for
folding, defined as reaching a near-native conformation within 2.5 Å of the native conformation for
simulations that reached the native ensemble.

Table 1. Energy, bRMSD and secondary structure assignment by DSSP [29] (C = coil, E = sheet,
T = turn, S = bend) for the lowest energy structures from ten independent simulations.

Energy bRMSD Secondary structure
Name (kcal mol−1) (Å) (DSSP)

2EVQ — — CEEETTTTEEEC

2EVQ.5 −26.0 2.62 CEEETTTTEEEC

2EVQ.6 −25.9 2.40 CEEETTTTEEEC

2EVQ.2 −25.3 2.65 CEEETTTTEEEC

2EVQ.0 −25.2 2.52 CEEETTTTEEEC

2EVQ.9 −24.8 2.74 CEEETTTTEEEC

2EVQ.4 −24.5 2.49 CEEETTTTEEEC

2EVQ.3 −24.0 2.80 CEEETTTTEEEC

2EVQ.8 −22.4 2.74 CEEETTTTEEEC

2EVQ.7 −19.1 4.76 CCHHHHHTSSCC

2EVQ.1 −18.9 4.73 CCHHHHHTSSCC

The good agreement between the folded and the native conformation in illustrated in
figure 4 for both the backbone and important sidechains. To quantify the agreement we
also calculated the Cβ–Cβ distance difference matrix for the best conformation to the NMR
conformation (see figure 5). The Cβ–Cβ distance difference matrix shows the difference
between pairs of Cβ–Cβ distances between two structures. A completely black matrix will
mean a complete agreement. The matrix clearly shows the agreement between Cβ–Cβ distances
of the two structures, implying the correct side-chain alignments in the predicted structure.
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Figure 3. 3D (top) and contour view of the low-energy part of the free-energy landscape assembled
from the analysis of all conformations visited in the course of the folding simulations.

Hydrogen bonding is responsible for the formation of secondary structure in proteins and
its energetic contribution plays a crucial role in stabilizing protein structures. Especially in beta-
sheets, where the hydrogen bond interactions for amino acids is not consecutive in the sequence,
a slight change in hydrogen bonding patterns can result in very different structures. Using the
same criteria as above we find that four out of five hydrogen bonds present in the native state
are found in the lowest-energy conformation (see table 2, calculated using Molmol [31]).
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Figure 4. Overlay of folded structure (red) of the hairpin loop on the experimental structure (green).
The left panel shows the overlap of the backbone only with the hydrogen bonds, while the right panel
shown in addition the overlay of the sidechains (blue spheres).

Figure 5. The Cβ–Cβ pixel in row i and column j of the colour-coded distance map indicates
the difference in the Cβ–Cβ distances of the native and the folded structure. Black/grey squares
indicate that the Cβ–Cβ distances of the native and the other structure differ by less than 1.5/2.25 Å
respectively. White squares indicate larger deviations.

Table 2. Hydrogen bond topology for the native conformation and the lowest-energy conformation.

H bond Topology Best
NH O 2EVQ (2EVQ.5)

2THR 11THR Y Y
4ASN 9LYS+ Y Y
7THR 4ASN Y
8GLY 4ASN Y Y
9LYS+ 4ASN Y
11THR 2THR Y Y

4. Conclusions

We have demonstrated that the modified forcefield PFF02 correctly predicts the native
conformation of the designed β-hairpin loop (PDB:2EVQ) as the global minimum of the its
free-energy surface. The best conformation found in the simulation deviates by only 2.62 Å
from the NMR conformation. It has the correct hydrogen bonding pattern and side-chain
alignment as found in the NMR conformation. Eight out of ten simulations converge to less
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than 3 Å bRMSD from the native structure. We find a single folding funnel in the low-energy
part of the free-energy surface, which appears very rugged in the absence of backbone entropy.
The greedy version of the basin-hopping technique, which was used in this study, is able to
efficiently locate the global minimum of this complex free-energy surface to correctly predict
the folded state.
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